
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2004; 46:507–532 (DOI: 10.1002/�d.765)

Coupled lattice-Boltzmann and �nite-di�erence simulation of
electroosmosis in micro�uidic channels

Dzmitry Hlushkou1, Drona Kandhai2 and Ulrich Tallarek3;∗;†

1Max-Planck-Institut f�ur Dynamik komplexer technischer Systeme; Sandtorstra�e 1;
39106 Magdeburg; Germany

2Kramers Laboratorium voor Fysische Technologie; Delft University of Technology; Prins Bernhardlaan 6;
2628 BW Delft; The Netherlands

3Institut f�ur Verfahrenstechnik; Otto-von-Guericke-Universit�at Magdeburg;
Universit�atsplatz 2; 39106 Magdeburg; Germany

SUMMARY

In this article we are concerned with an extension of the lattice-Boltzmann method for the numeri-
cal simulation of three-dimensional electroosmotic �ow problems in porous media. Our description is
evaluated using simple geometries as those encountered in open-channel micro�uidic devices. In par-
ticular, we consider electroosmosis in straight cylindrical capillaries with a (non)uniform zeta-potential
distribution for ratios of the capillary inner radius to the thickness of the electrical double layer from
10 to 100. The general case of heterogeneous zeta-potential distributions at the surface of a capillary
requires solution of the following coupled equations in three dimensions: Navier–Stokes equation for
liquid �ow, Poisson equation for electrical potential distribution, and the Nernst–Planck equation for
distribution of ionic species. The hydrodynamic problem has been treated with high e�ciency by code
parallelization through the lattice-Boltzmann method. For validation velocity �elds were simulated in
several microcapillary systems and good agreement with results predicted either theoretically or obtained
by alternative numerical methods could be established. Results are also discussed with respect to the
use of a slip boundary condition for the velocity �eld at the surface. Copyright ? 2004 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Rapid recent developments in design, patterning, and utilization of micro�uidic devices (valves,
pumps, mixers, reactors, sensors and actuators, or three-dimensional channel networks) have
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found many applications in the devised bulk transport and separation, identi�cation, synthesis,
and manipulation of a wide range of chemical and biological species [1–6]. It is an advance-
ment that becomes particularly important for the lab-on-a-chip concept [7] where transport
processes including the e�cient mixing of micro- and nanoliter liquid volumes, the con-
trol and enhancement of reaction rates, heat and mass transfer, as well as the selectivity of
chromatographic separations occur on much smaller time and length scales than traditional
engineering technologies. With channel diameters from several to a few hundred micrometers
(inherently placing micro�uidics into the low-Reynolds number hydrodynamics regime) and
channel lengths approaching centimeter dimension, these systems permit a miniaturization of
chemical processes and large-scale integration of engineering principles, allowing fast response
times at low operational costs [6].
Concerning the bulk transport of liquid through a micro�uidic channel electroosmosis can

o�er distinct advantages over pressure-driven �ow. Electroosmotic �ow (EOF) is generated
by interaction of an externally applied electrical �eld with that part of the electrolyte solution
that has become locally charged at the interface to the stationary and oppositely charged solid
surface of the con�ning porous medium [8, 9]. The extension into the bulk solution of the
�uid-side domain of this electrical double layer can be as small as a few nanometers compared
to a channel diameter of micrometer dimension, a fact that has some important consequences
for the EOF dynamics under these conditions [10]. First, from a macroscopic point of view,
bulk liquid moves as in plug �ow, i.e. the velocity apparently slips at the wall, which is in
contrast to the parabolic velocity pro�le typical for Poiseuille �ow. Second, because the ratio
of electroosmotic to hydraulic volumetric �ow rates (at �xed potential and pressure gradient) is
inversely proportional to the squared channel diameter, the EOF becomes increasingly e�ective
in liquid transport through the �ner channels as their size is reduced. Thus the bene�t of using
EOF is that chemical and biological species may be easily transported in micro�uidic devices
over comparatively long distances with negligible mass transfer resistance. Hydrodynamic
dispersion can then be limited almost to that by longitudinal di�usion alone which has been
demonstrated experimentally [11, 12].
Stimulated by the enormous potential and accompanying need for a far more detailed char-

acterization of the electrokinetically driven mass transport in microfabricated (or microchip)
devices, numerical simulation of EOF in micro�uidic channels has received increased at-
tention over the past few years [13–28]. These investigations have revealed that, in good
agreement with available experimental data, the transport characteristics of the EOF in mi-
crochannels clearly depend on the properties of the working �uid and the geometrical (and
physico-chemical) parameters of the surface. For example, the work of Gri�ths and Nilson
[16] which is based on a direct solution of the governing transport equations demonstrates
that, over a wide range of conditions, the longitudinal dispersion coe�cient of a neutral,
non-reacting solute in EOF may be many orders of magnitude smaller than for the parabolic
or nearly so velocity distribution in pressure-driven �ow. Ermakov et al. [15] used a 2D
code to address the electrokinetic species transport with respect to some basic micro�uidic
elements. They considered the sample focusing in a channel cross and sample mixing at a
T-junction. Patankar and Hu [14] carried out 3D �ow �eld simulations to investigate EOF
behaviour at a channel cross, while Bianchi et al. [17] used �nite element-based simulations
to describe �ow division at a decoupling T-junction, encountering combined electroosmotic
and pressure-driven �ows. Fu et al. [25] presented a physical model and numerical method
for studying geometrical e�ects on the performance of electrophoresis microchips. Erickson

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:507–532



NUMERICAL SIMULATION OF ELECTROOSMOTIC FLOW 509

and Li [27] utilized 3D �nite element-based numerical simulations to resolve the in�uence of
a heterogeneous surface charge distribution on local �ow circulation in the bulk liquid under
the aspect of sample mixing in a T-shaped micromixer. While these numerical approaches
provide valuable insight into �ow behaviour in relatively simple channel geometries, tradi-
tional computational �uid dynamics can face drawbacks if higher code �exibility is required,
e.g. when dealing with a more complicated pore space morphology, complex �ows, or code
parallelization.
Over the last decade the lattice-Boltzmann (LB) methods [29–34] have achieved great

success as alternative and e�cient numerical schemes in the simulation of a variety of transport
phenomena in porous media, with a particular emphasis on the dynamics of pressure-driven
�uid �ow through complex materials [34–50]. Besides their �exibility and accuracy in dealing
with the con�ning geometry and actual boundary conditions LB methods are inherently parallel
and, thus, they are ideally suited for high-performance parallel computing. In contrast to the
more conventional numerical schemes based on a discretization of macroscopic continuum
equations, the LB method utilizes mesoscopic kinetic equations to recover the macroscopic
Navier–Stokes equation for �uid motion in the long-time, large-scale limit [34]. Further, early
systematic problems of LB methods like the existence of velocity-dependent pressures and
lack of a Galilean invariance are essentially resolved, and algorithms have been simpli�ed by
the single relaxation time scheme of Bhatnagar et al. [51–53].
Only a few reports have been published so far in which LB simulations also consider

electrokinetic phenomena. Rather recently, the LB method has been implemented to model
high-Reynolds number pressure-driven �ow in micro�uidics, taking into account electroviscous
e�ects that can become important due to the �nite thickness of electrical double layers com-
pared to typical channel sizes [54], and a reasonable agreement with published experimental
data on the friction factor—Reynolds number relation [55] was obtained. Further, in the work
by Nie et al. [56] an extension of the LB method was proposed based on a density-dependent
viscosity model and technique for imposing a slip-velocity at the wall. It was demonstrated
that this approach can capture fundamental characteristics of microchannel �ow. Warren [57]
analysed electrokinetic transport in a parallel-sided slit with a constant electrical charge (or
potential) at this solid–liquid interface. The resulting one-dimensional problem was further re-
strained by assuming a thick electrical double layer compared to the width of the slit. While
this work addresses cases with signi�cant double layer overlap encountered in ultra�ne capil-
laries [58], for many situations with technological relevance, as for the electrokinetic transport
in open-channel microchip devices, a characteristic channel dimension normal to the local �ow
direction becomes (much) larger than the typical thickness of electrical double layers at the
solid–liquid interface. It is this condition, in particular, that needs to be satis�ed in order to
gain full potential of the EOF (compared to pressure-driven �ow) with respect to dispersion
and permeability [59]. Further, most industrial and natural porous media are characterized by
random or hierarchically-structured, but relatively broad pore size distributions, contrasting
with the network of uniformly sized and shaped channels in micro�uidic devices. In the gen-
eral case, bulk transport involves conditions for which the ratio of a local pore radius to the
electrical double layer thickness covers a spectrum from below unity up to several hundreds
[60]. The numerical approach that we present in this work can cope with any geometry and
possible surface heterogeneity and, thus, it will be particularly e�cient in resolving details
of the �ow �eld that govern transport and dispersion in a transient, as well as long-time
asymptotic regime.
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2. ELECTROKINETICS

2.1. Electroosmotic �ow in a micro�uidic channel

Figure 1 illustrates, at di�erent length scales, the basic aspects of electroosmosis in a micro�u-
idic channel with locally �at, smooth surface. When a dielectric solid (e.g. a fused-silica cap-
illary) is contacted with a liquid electrolyte (e.g. a dilute aqueous NaCl solution) an electrical
double layer (EDL) developes at the solid–liquid interface due to ionizable groups of the mate-
rial (dissociation of silanol groups in the above example: ≡Si−OH+H2O⇔ ≡Si−O−+H3O+)
or by ions adsorbing on its surface. The resulting negative charge density of the capillary
(channel) inner wall a�ects the distribution of hydrated sodium (counter)ions in the solution:
In immediate proximity to the surface there exists a layer of ions which are relatively strongly
�xed by electrostatic forces. It forms the inner or compact part of the �uid-side domain of
the EDL and its typical thickness is of the order of only one ion diameter (about 0:5 nm).
The outer Helmholtz plane (OHP, Figure 1(c)) separates inner and di�usive layers which,
together, constitute the EDL. While the ionic species in the di�usive layer undergo Brown-
ian motion, they are also in�uenced by the local electrostatic potential. At equilibrium their

Figure 1. Illustration of electrokinetically driven �ow (electroosmosis) through a straight cylindrical
capillary with �¡0: (a) Experimental set-up; (b) pore-scale velocity pro�le of electroosmotic �ow

(EOF); and (c) distribution of electrical potential in the electrical double layer (EDL).
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accumulation in this region can be described by the Boltzmann equation. The spatial dimension
of the di�usive layer is typically between a few and hundred nanometers.
EOF sets in when an external electrical �eld (Eext =−∇�) is applied. It interacts with

the EDL �eld to create an electrokinetic body force on the liquid. Consequently, the bulk
of liquid is driven by viscous drag via the shear stresses concentrated in the relatively thin
EDL (compared to a capillary radius rc of micrometer dimension). The potential ( ) at the
so-called shear plane separating mobile and immobile phases is the electrokinetic or zeta-
potential (�). For the case considered here (smooth surface, simple ions) � should be close
to, if not coincident with the di�usive double layer potential  OHP (Figure 1(c)). The �uid
velocity rises from zero at the shear plane to a limiting value vmax beyond the EDL where,
from a macroscopic point of view, the liquid seems to slip past the surface (Figure 1(b))

vmax =�eoEext =−�0�r

(
�
�f

)
Eext (1)

�eo denotes the electroosmotic mobility and �f is the dynamic viscosity of the �uid. �0 is the
permittivity of vacuum and �r the relative permittivity of the electrolyte solution. The minus
sign in Equation (1) means that vmax and Eext are in the same direction when � is negative.
Without any externally applied pressure forces and uniform distribution of � along the channel
wall the liquid moves as in plug-�ow as the gradient in  beyond the EDL is negligible. The
thickness of the EDL is characterized by

�D=
(

�0�rRT
F2
∑

i z
2
i ci;∞

)1=2
(2)

where R is the gas constant, T the absolute temperature and F Faraday’s constant, zi is the
valency of ionic species i and ci;∞ its molar concentration in the electroneutral solution. �D is
the Debye screening length and about 10nm for a 10−3M 1:1 aqueous electrolyte solution. In
this case the EDL is much smaller than the radius of micrometer channels (rc=�D¿100) and
the volumetric EOF rate is approximately given by Q= vmaxA (where A is the cross-sectional
area of a channel). However, as the channel diameter approaches submicrometer dimension
and=or as �D increases the EDL cannot be considered as thin any longer (e.g. rc=�D ≈ 10)
and the plug-like velocity pro�le deteriorates towards a parabola, as known for Poiseuille
�ow (rc=�D=2), with an accompanying increase in hydrodynamic dispersion evidenced by
Figure 2 [10, 61].

2.2. General mathematical formulation

The velocity �eld of an incompressible Newtonian electrolyte solution in low-Reynolds number
�ow through a micro�uidic channel is governed by the Navier–Stokes equation

�f

(
@v
@t
+ (v · ∇)v

)
=−∇p+ �f∇2v+ f (3)

where �f is the density of the �uid, v represents the divergence-free velocity �eld (∇ · v=0),
and p denotes hydrostatic pressure. The body force f is related to the volume density of
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Figure 2. Velocity pro�les of EOF in an open-straight, cylindrical capillary for di�erent values of
rc=�D obtained by solution of the momentum balance equation [61]. Externally applied electrical �eld
Eext = 5× 104 Vm−1, �= −0:1V, �r = 80; liquid density and viscosity are 106 gm−3 and 0:89gm−1 s−1,

respectively (at T =298:15 K). The Debye screening length (�D) is 10 nm.

charge �q and the local electrical �eld (E=−∇�) by

f =�qE=−qe∇�
N∑
i=1

zini for i=1; : : : ; N (4)

where qe stands for the elementary charge, ni is the number concentration of ionic species i in
the N -component electrolyte solution, and � denotes the local electrostatic potential governed
by the Poisson equation

∇2�=− �q
�0�r

(5)

The �ux density ji (the number of ions per unit area passing through the surface of a volume
element) is related to the local �uid velocity and gradients in ion density and electrical
potential by the Nernst–Planck equation

ji=
(
v − qeziDi∇�

kBT

)
ni − Di∇ni (6)

where Di is the mass di�usion coe�cient and kB is the Boltzmann constant. Each ionic species
satis�es the following conservation:

@ni

@t
+∇ · ji=0 (7)
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Together with appropriate initial and boundary conditions Equations (3)–(7) describe the
mass transport in systems with arbitrary geometry, distribution (and magnitude) of �, and
aspect ratio. It is important to note that we consider here (cf. Equations (4)–(6)), without
further simpli�cation, the local electrostatic potential in the channel which, in general, includes
contributions from both the EDL and Eext. Further, the presented description does not rely on
the Boltzmann distribution for electrical charges in the di�usive part of the EDL applicable
only at thermodynamic equilibrium. It would assume that this distribution remains undisturbed
by external convective in�uences which is justi�ed only under certain limiting conditions,
e.g. at low Peclet number in channels of arbitrary geometry and for a uniform distribution
of � [13].
In this work we consider fully developed, steady, isothermal EOF in the micro�uidic chan-

nel. It eliminates time derivatives in Equations (3) and (7), as well as the need for initial
conditions. Thus, we remain concerned with the following set of coupled equations:

�f (v · ∇)v=−∇p+ �f∇2v − qe∇�
N∑
i=1

zini (8a)

∇ · v=0 (8b)

∇2�=−qe
N∑
i=1

zini=�0�r (8c)

v∇ni − Di∇2ni − qeziDi

kBT
∇ · (ni∇�)=0 (8d)

2.3. Boundary conditions

Because the length of a micro�uidic channel is large compared to heterogeneities in the �ow
�eld and species transport on any length (and associated time) scale we assume longitudinal
spatial periodicity [62]. Consequently, our description reduces to that of a representative unit
(Figure 3(a)) with periodic (outer) boundary conditions

[|�|]=C; [|ni|]= 0; [|v|]= 0 (9)

where C is a constant related to the conditions of an experiment (including pH, the elec-
trolyte concentration, Eext, surface adsorption, or temperature) and [| : : : |] denotes the di�erence
between values of a function at opposite points lying on the corresponding unit boundaries.
The outer boundary conditions have to be complemented by inner boundary conditions

which de�ne the values of the electrical potential (or charge), �ow velocity and species num-
ber concentrations at the solid–liquid interface. The common no-slip and normal-zero-�ux
conditions are recognized at this interface for the �uid �ow velocity and number concentra-
tions, respectively

v = 0 (10a)

� · ji = 0 (10b)

where � is the outer normal to the solid–liquid interface. In turn, an electrical boundary
condition can be represented by either the surface charge density or zeta-potential. Since
these characteristics, in particular, depend on both the nature of contacting media and the local

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:507–532



514 D. HLUSHKOU, D. KANDHAI AND U. TALLAREK

Figure 3. Discretization and approximation of the solution domain: (a) Capillary scale. Spatial
periodicity reduces the description to that of a representative unit with periodic boundary conditions;
(b) Solid–liquid interface. The solution domain is represented by a set of uniform cubic cells; and

(c) Single L-cell. Entry and exit �ux density components.

environment, e.g. the interfacial space morphology or the local pH, they can be considered, in
general, as spatially variable quantities. Thus, the electrical boundary conditions at the solid–
liquid interface can be imposed in two alternative ways: by given surface charge density (	)
or zeta-potential (�) distribution, respectively

� · ∇�=− 	(r)
�0�r

(11a)

or

�= �(r) (11b)

The former equation corresponds to the Neumann-type, the latter to the Dirichlet-type bound-
ary condition.
This presentation of inner boundary conditions assumes that the boundary values of all

quantities (�ow velocity, species �ux, surface charge density, zeta-potential) are related to
the same location. In fact, while the no-slip and normal-zero-�ux conditions, as well as the
surface charge density are recognized directly at a solid–liquid interface, the zeta-potential is
de�ned with respect to the shear plane (Figure 1(c)). However, since this plane is located in
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immediate proximity (≈ 0:5nm) to the solid–liquid interface, it is assumed that these surfaces
coincide.

3. COMPUTATIONAL METHODS

3.1. General scheme

To solve the system of time-independent partial di�erential equations (Equations (8a)–(8d))
subject to inner and outer boundary conditions (Equations (9)–(11)) we implemented an
iterative scheme (Figure 4). At each iteration �rst the coupled Nernst–Planck and Poisson
equations (Equations (8c) and (8d)) were solved numerically. Then, the Navier–Stokes equa-
tion (Equation (8a)) together with the continuity equation (Equation (8b)) were solved. The
iterative solution had continued until convergence of the �ow �eld was reached. As initial
guess we used zero �ow �eld, as well as bulk number concentrations and the electrical poten-
tial distribution caused by the applied �eld. This contribution to the local electrical potential
is assumed to be point-wise constant during iterations.
Thus, the numerical scheme requires solution of Poisson, Nernst–Planck, and Navier–Stokes

equations (where the last problem is, by far, the more di�cult computational task). While

Figure 4. Flow-chart of the computational scheme employed for the PNP–LB (Poisson–Nernst–Planck
coupled with lattice-Boltzmann) simulations.
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we employed traditional �nite-di�erence methods to resolve the �rst two problems, the lattice-
Boltzmann method has been applied for solution of the Navier–Stokes problem.

3.2. Geometry and discretization of the solution domain

A uniform mesh has been utilized for numerical solution of all of the above-mentioned prob-
lems. Thus, the solution domain can be represented by a set of equal cubic cells of size h
(Figure 3(b)). Cells were divided into two subsets, i.e. cells having their geometrical centre
in the liquid phase (L-cells) or in the solid phase (S-cells). During a simulation the electrical
potential, charge number concentration, and �uid velocity are determined at the centres of
only the L-cells. S-cells adjacent to L-cells are considered as interface cells and the actual
values of physical quantities at their centres are used as boundary values.

3.3. Numerical solution of the Poisson–Nernst–Planck problem

The �nite-di�erence scheme for solution of the Nernst–Planck equation is based on the total
�ux density in an L-cell. For steady-state the net �ux is zero. This situation can be represented
by entry and exit components on each of the six cell surfaces (Figure 3(c))

jx;+k; l;m + jx;−k; l;m + jy;+k; l;m + jy;−k; l;m + jz;+k; l;m + jz;−k; l;m=0 (12)

where k; l, and m de�ne the discrete co-ordinates of a cell. If an L-cell is not lying adjacent to
the interface each of the �ux density components is expressed in terms of the �ow velocity,
concentration, and electrical potential at the centre of a given and neighbouring points. For a
particular species, for example, we have

jx;+k; l;m =
vxk+1; l;m + vxk; l;m

2
nk+1; l;m + nk; l;m

2
− D

nk+1; l;m − nk; l;m

h

− qezD
kBT

nk+1; l;m + nk; l;m

2
�k+1; l;m −�k; l;m

h
(13)

If an L-cell is adjacent to the interface and the normal-zero-�ux boundary condition is ap-
plied, the corresponding term in Equation (12) is eliminated. By assuming that interface and
boundary values lie on the border between L- and S-cells the distance h=2 (instead of h)
should be used. This is consistent with the location of the no-slip wall in LB simulations
based on the bounce-back boundary condition [63]. By using similar expressions for the other
�ux components, substituting into Equation (12), and solving the equation for nk; l;m one can
obtain an explicit expression for calculation of its updated value. It is determined by the
concentration values from a previous iteration, as well as with the �ow velocity and electrical
potential values in a given and neighbouring cells. We used an SOR scheme to get a more
rapid convergence

˙nk; l;m =!nk; l;m + (1− !)�nk; l;m (14)

where ˙nk; l;m is updated number concentration at current iteration, �nk; l;m is the number con-
centration from previous iteration, and ! is the relaxation parameter. Then, updated number
concentration values for each species in all cells are used for solution of the Poisson equation.
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Its �nite-di�erence representation is

−
∑

nk; l;mzqe
�0�r

=
2

hk+1=2 + hk−1=2

(
�k+1; l;m −�k; l;m

hk+1=2
− �k; l;m −�k−1; l;m

hk−1=2

)

+
2

hl+1=2 + hl−1=2

(
�k; l+1; m −�k; l;m

hl+1=2
− �k; l;m −�k; l−1; m

hl−1=2

)

+
2

hm+1=2 + hm−1=2

(
�k; l;m+1 −�k; l;m

hm+1=2
− �k; l;m −�k; l;m−1

hm−1=2

)
(15)

where, for example, hk+1=2 is the distance between the centres of cells (k+1; l; m) and (k; l; m);
the summation should be made over all ionic species. As for the Nernst–Planck equation, this
expression needs to be modi�ed if the cell is adjacent to the interface, by replacing either
the corresponding distance h by h=2 (Dirichlet boundary condition) or the corresponding
potential di�erence by 2	=(h�0�r) (Neumann boundary condition). By applying the traditional
Gauss–Seidel iterative procedure Equation (15) allows to obtain an explicit expression for
determination of the updated value of electrical potential which, in the case of the Dirichlet
boundary condition, can be written as,

˙

�k; l;m =
(

1
hk+1=2hk−1=2

+
1

hl+1=2hl−1=2
+

1
hm+1=2hm−1=2

)−1

×
(∑

nk; l;mzqe
2�0�r

+
hk−1=2 ��k+1; l;m + hk+1=2

˙

�k−1; l;m
hk+1=2hk−1=2(hk+1=2 + hk−1=2

)

+
hl−1=2 ��k; l+1; m + hl+1=2

˙

�k; l−1; m
hl+1=2hl−1=2(hl+1=2 + hl−1=2)

+
hm−1=2 ��k; l;m+1 + hm+1=2

˙

�k; l;m−1
hm+1=2hm−1=2(hm+1=2 + hm−1=2)

)
(16)

The calculations of the number concentration and electrical potential stop when the conver-
gence rate


PNP =

√√√√∑k; l;m(
˙

�k; l;m − ��k; l;m)2∑
k; l;m

��
2
k; l;m

(17)

becomes less than the prede�ned value �PNP (PNP≡Poisson–Nernst–Planck), which is typi-
cally set to 10−6.

3.4. The lattice-Boltzmann algorithm

The electrolyte solution as a statistical system can be described in terms of a distribution
function F(r; u; t) de�ned such that F(r; u; t) dr du gives the number of �uid molecules which,
at time t, are located between r and (r+dr) and have velocities in a range from u to (u+du).
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Macroscopic quantities like the �uid density �f and the velocity v can be determined by
momentum integration of this distribution function

�f (r; t)=
∫

MmF(r; u; t) du (18)

and

v(r; t)=
1

�f (r; t)

∫
MmuF(r; u; t) du (19)

where Mm denotes molecular mass. The evolution of the distribution function can be described
by the following equation:

F

(
r+ u dt; u+

F
Mm

dt; t + dt
)
dr du=F(r; u; t) + �(F) dr du dt (20)

where F is the acting external force and � denotes the collision operator. It is well known
that the macroscopic properties are not directly dependent on the details of the microscopic
behaviour, but are mainly de�ned through interactions between molecules expressed, for ex-
ample, by an appropriate collision operator. Thus, the transition toward a simpli�ed dynamics
with discrete space, time and molecular velocities is feasible. The discrete analogy of Equation
(20) is

F�(r+ e�	t; t +	t)=F�(r; t) + ��(F�) +	tF� (21)

where F� is the distribution function for the �th discrete velocity e� at position r and time t,
and 	t is the time step. In this work we are concerned with a modi�cation of the LB approach,
the so-called lattice-BGK (Bhatnagar–Gross–Krook) model [34, 52], being characterized by the
discrete Boltzmann equation with a single-time relaxation collision operator

F�(r+ e�	t; t +	t)=F�(r; t) +
1


[Feq

� (r; t)− F�(r; t) +	tF�] (22)

where F
eq
� represents the equilibrium distribution function and 
 is a non-dimensional relax-

ation time. For the D3Q19 lattice-BGK model [32] F
eq
� can be expressed by,

Feq
� =�fw�

[
1 +

3
c2s
e� · v+ 9

2c4s
(e� · v)2 − 3

2c2s
v · v
]

(23)

where cs is the speed of sound and w� is a weighting factor depending on the length of the
vector e� given by [52]

w�=



1=3; �=0 (rest particle)

1=18; �=1; 2; : : : ; 6 (nearest neighbours)

1=36; �=7; 8; : : : ; 18 (next-nearest neighbours)

(24)

Incorporation of a body force term caused by the interaction of the EDL �eld with the
externally applied electrical �eld into the discrete Boltzmann equation was performed using
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the method described by Guo et al. [64]

F�=
(
1− 1

2


)
w�

[
e� − v
c2s

+
(e� · v)

c4s
e�

]
·F (25)

To satisfy the no-slip boundary condition for velocity at the solid–liquid interface, we em-
ployed the conventional bounce-back scheme, where momentum from an incoming particle is
bounced back in opposite direction when it hits the wall.
After each iteration the divergence rate


NS =

√∑
k; l;m(

˙vk; l;m −�vk; l;m)2∑
k; l;m �v

2
k; l;m

(26)

is calculated and compared with a prede�ned value of �NS (NS≡Navier–Stokes). The simu-
lation stops when 
NS¡�NS (typically 10−4) is satis�ed.
Here, it should be noted that the overwhelming majority of real electrokinetic systems

operates in the low-Mach number limit which is a necessary condition for application of the
LB method. Typical EOF velocities are of the order of a few millimeters per second which
is much less than the speed of sound in liquid media.

4. RESULTS OF SIMULATIONS

4.1. Homogeneous equilibrium double layer

Although the presented model is capable of dealing with both arbitrary distribution of �
and geometrical con�guration of the solid–liquid interface, we started to simulate EOF in
relatively simple systems for which either an analytical solution to the problem exists or the
results of other numerical simulations are available for comparison. Quantitative analysis of
computed �elds of a physical quantity 
 (e.g. species number concentration or �ow velocity
components) is based on the global relative error � de�ned with respect to some appropriate
reference value

�=

√∑
(
−
ref )2√∑


2ref
(27)

In particular, for the lattice-Boltzmann EOF velocity �eld in a homogeneous capillary the
reference values may be obtained by numerical solution of the momentum balance equation
using the Runge–Kutta method.
To test the adequacy of the model for simulating electrical charge distributions in the

di�usive part of the EDL (cf. Figure 1(c)) we begin with an isolated, homogeneous solid–
liquid interface for which the typical dimension of surface roughness is smaller than the EDL
thickness, and simulate the ionic number concentration in the electrolyte in contact with this
surface by solving the Poisson and Nernst–Planck problems. At equilibrium, without concen-
tration gradients and any externally applied �eld, the electrical potential distribution can be
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obtained from the Poisson–Boltzmann equation

∇2 =− qe
�0�r

N∑
i=1

zini;∞ exp
(

−qezi 
kBT

)
(28)

where the local concentration is determined by the Boltzmann distribution

ni= ni;∞ exp
(

−qezi 
kBT

)
(29)

The analytical solution of Equation (28) (the starting point of the Gouy–Chapman description
[65] of the di�usive EDL) for a charged, �at surface, a symmetrical 1:1 electrolyte such as
NaCl (z1 =−z2 = z), and an arbitrary magnitude, but uniform distribution of the zeta-potential
(�) is [66]

 (x)=
2kBT
qez

ln



1 + e−x=�D tanh

(
qez�
4kBT

)

1− e−x=�D tanh
(

qez�
4kBT

)

 (30)

where x is the distance from the surface. For values of � low enough (below ca. 25 mV)
Equation (30) reduces to the so-called Debye–H�uckel equation,  (x)= �e−x=�D . Results for the
distribution of net electrical charge density based on the analytical solution (Equations (29)
and (30)) and the numerical treatment outlined in Section 3.3 are shown in Figure 5. Because
�D appears as characteristic decay length for the potential, we analysed the global relative error
in dependence of the grid resolution with respect to �D (see inset). As electrolyte we consid-
ered an aqueous solution of NaCl at 298:15 K with concentration (9:43 × 10−4 M) adjusted
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Figure 5. Distribution of net electrical charge in the EDL at a �at solid–liquid interface (the open circles
are the results of the numerical solution, solid line: analytical solution) and dependence of the global

relative error (�cd) on the grid resolution with respect to the double layer thickness (inset).
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such that �D is 10nm (Equation (2)), while the surface is characterized by �=−100mV. One
conclusion to be drawn from Figure 5 is that the net charge density (cd) away from a charged
surface can be computed with global relative errors (�cd) better than 2% for a grid resolution
�D=h of 1 and higher (�cd = 0:59% for �D=h=30) by using the Poisson–Nernst–Planck solver
described above (in Section 3.3). It is further evident that after a distance of about 5�D

from the surface the solution is practically electroneutral. Recalling that this distance is about
50 nm under the present set of conditions, it is only a thin liquid layer close to the interface
that becomes locally charged, in general, when considering electrolytes con�ned by pores of
micrometer dimension.

4.2. Straight, homogeneous cylindrical capillary

As a next step, we simulated EOF in a straight, homogeneous cylindrical capillary. The spatial
homogeneity of this system alleviates the use of an iterative procedure for obtaining the steady-
state velocity �eld. Ionic number concentrations are not disturbed by forced convection. Thus,
the Poisson–Nernst–Planck solver and LB-code are run only once. Because there is no general
analytical solution available for the EOF problem in a cylindrical capillary, the simulated
velocity �eld was compared with one obtained by numerical solution of the one-dimensional
momentum balance equation [61]

d2vx
dr2

+
1
r
dvx
dr
=
2Eextqen∞

�f
sinh

(
qe 
kBT

)
(31)

The solution of this equation provides the radial distribution of axial EOF velocities in the
cylindrical capillary. Equation (31) was solved with a very �ne resolution (2×105 points per
channel diameter). Further, the use of di�erent capillary radii allowed to realize aspect ratios
rc=�D from 10 to 100. Figure 6 compares velocity pro�les obtained by both procedures. As
was already emanating from Figure 5, an applied electrical �eld will be interacting with the
electrolyte solution only in the EDL where the liquid has acquired a net charge. Thus, the
driving force for EOF is not constant over the capillary diameter: it dominates in vicinity
of the capillary wall, but soon becomes zero in the central region of the capillary lumen.
There, motion of bulk liquid is caused by a viscous drag force leading to the plug-like
velocity distribution beyond the slipping plane (Figure 1(b)). The dependence of the global
relative error �vf of the axial component in a velocity �eld (vf) on the spatial resolution
with respect to the capillary radius is demonstrated in Figure 7 for various aspect ratios. It
should be mentioned that the error associated with the spatial resolution manifests itself in
an inaccuracy of both the calculated electrical charge distribution (which, in turn, is a�ected
by the simulated electrical potential distribution) and velocity �eld. This can explain why the
total error �vf does not exhibit the squared dependence on grid resolution which is inherent
individually in the �nite-di�erence and LB methods. Nevertheless, one can achieve higher
accuracy by grid re�nement, e.g. the use of 100 grid points over a capillary radius rc resulted
in �vf of less than 6% (for all aspect ratios). On the other hand, the computational time grows
with the third power of the spatial resolution.
The complete simulation of EOF in a cylindrical capillary (for rc=h=50) took about 15

CPU minutes per cross-sectional layer for one computer node. In general, simulations were
performed on a Hewlett-Packard Superdome at the Otto-von-Guericke-Universit�at Magdeburg,
Germany.
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Figure 6. EOF velocity �eld in an open-straight, cylindrical capillary with homogeneous and smooth
surface: solution of the momentum balance equation (top) vs the PNP–LB approach (bottom) for:

(a) rc=�D=10; and (b) rc=�D=100. The same conditions as in Figure 2 have been used.

4.3. Straight cylindrical capillaries with axial and angular inhomogeneities in electrokinetic
potential

Then, we modelled EOF in cylindrical capillaries with a destinated axial and angular dis-
tribution of the zeta-potential (Figure 8). This con�guration can be considered as simpli�ed
approach for dealing with a heterogeneous surface charge distribution in porous media under
more general conditions. In fact, the spatial scale of locally varying electrical potential is often
signi�cant with respect to the thickness of the EDL, and it can have a number of reasons.
For example, it can already be introduced by the inherent manufacturing process of a mate-
rial, speci�c ageing, the storage conditions, chemical reactions, or the eventually irreversible
adsorption of molecular or colloidal species on the surface, with a concomitant change of
local roughness and electrokinetic properties [61, 67–73]. Consequently, the favourable, i.e.
plug-like EOF velocity pro�le becomes disturbed by induced pressure gradients resulting from
an axial variation of the surface charge at the inner wall of a micro�uidic channel [71–74].
In turn, this necessarily leads to additional hydrodynamic dispersion. The problem becomes
especially severe for the transport of sample mixtures containing large biomolecules such as
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Figure 8. Inhomogeneous charge distributions (discrete patterns) at the inner wall of the cylindrical
capillary: (a) Surface charge pattern 1 (P1): Step changes of � in the axial direction, angular uniformity;

and (b) P2: Step changes of � in the angular direction, axial uniformity.

proteins, peptides or DNA [75] which are charged and, thus, can interact strongly with the
often oppositely charged surface through hydrophobic and electrostatic mechanisms. As their
adsorption progresses in time, it continues to cause unreproducible local, as well as average
EOF velocities and a signi�cant loss of resolution in the separation of individual compo-
nents due to increased axial dispersion and a strong tailing in the residence-time distributions
characterized by non-Gaussian shape.
In general, local variations in electrical potential produce a non-uniform electrokinetic driv-

ing force that requires local (positive or negative) pore pressure for compensating the asso-
ciated momentum in an incompressible �uid [71–74]. Unfortunately, the actual spatial and
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Figure 9. Local �ow pro�les in the capillary with surface charge pattern P1 (cf. Figure 8(a)).
Velocity distributions in the central cross-section of each segment: (a) segment A (�=−100mV); and
(b) segment B (�=0mV). The Debye screening length (�D) is 10 nm and rc=�D=100; Eext =5× 104 V m−1,
liquid density and viscosity are 106 gm−3 and 0:89 gm−1 s−1, respectively, �r = 80; T =298:15 K.

temporal distribution of electrical potential in a real porous medium usually is unknown
making it di�cult to study on a quantitative basis. On the other hand, this e�ect may be tai-
lored, e.g. for enhanced micro�uidic mixing, by employing surfaces with a patterned charge
distribution [27, 76]. For example, Stroock et al. [76] studied EOF driven by two patterned
geometries in rectangular microchannels in the limit of a thin EDL. They considered variations
of surface charge both parallel and perpendicular to the applied electrical �eld: While a recir-
culating �ow develops in the former case, multidirectional �ow along the �eld and channel
axis results in the latter [76]. Because these types of pattern act as a basis from which more
general three-dimensional �ows may be constructed and the �uid mechanical consequences
of (non)intended surface charge distributions in micro�uidic environments be evaluated [77],
we treated similar zeta-potential distributions in cylindrical capillaries (Figure 8). The �rst
pattern (P1) consists of cylindrical segments with spatially constant non-zero and zero zeta-
potential, alternating in the axial direction and having the length l=2rc. The second pattern
(P2) contains half-cylinders with zeta-potentials of opposite sign, but identical magnitude. The
EOF simulations were carried out with a computational resolution of rc=h=100 (�D=h=2).
Characteristic local velocity distributions for steady, fully-developed �ow resulting when an
external electrical �eld is superimposed on the EDL �eld in a general electrolyte solution in
contact with surface patterns P1 and P2 are shown in Figures 9 and 10, respectively.
The EOF in capillaries with heterogeneous distribution of surface charge (or value of �)

has been the topic of several previous studies. Anderson and Idol [67] have developed an
in�nite-series analytical solution for EOF through a cylindrical capillary with zeta-potential
varying periodically and solely in the axial direction. Using a similar approach Long et al. [74]
obtained an explicit solution for speci�c surface charge defects. Herr et al. [71] considered
the EOF in a cylindrical capillary with step-change in � in the axial direction and obtained
good agreement with their experimental data. Poto�cek et al. [68] and Ren and Li [61] have
numerically studied velocity distributions for EOF in circular microchannels for various non-
uniform distributions of �. More recently, Gleeson [78] developed an analytical solution for
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Figure 10. Simulated axial velocity distribution in a cross-section of the open cylindrical
capillary with surface charge pattern P2 (cf. Figure 8(b)) for rc=�D=100 (rc = 1 �m) and

the same conditions as in Figure 9.

the EOF problem in a cylindrical capillary with random zeta-potential distribution. It should
be noted that all of the above-mentioned studies were dealing with an axisymmetrical hetero-
geneity only. Moreover, but except for the work of Ren and Li [61], they assumed a small
EDL thickness which allowed to replace the no-slip boundary condition for the velocity at the
solid–liquid interface by the Helmholtz–Smoluchowski apparent-slip velocity (Equation (1))
and simplify the analytical solution. Ghosal [72] presented a theory for EOF in channels of
arbitrary cross-sectional geometry and distribution of � in the lubrication-limit where all axial
variations exist on length scales that are large with respect to a characteristic microchannel
width, but the assumption of a thin EDL also has been involved in that theory. Thus, reference
values for a quantitative analysis of the accuracy with which LB �ow �elds were computed
can be obtained only on the basis of this approximation. It should be pointed out that the
slip boundary condition eliminates a �uid region close to the surface where the velocity rises
from zero to the bulk value at the slipping plane. Since the thickness of this region does not
depend on the channel geometry, the relative contribution of that simpli�cation to the total
error decreases with increasing channel diameter (or characteristic transverse dimension).
For a thin EDL the relation between local �ow velocity and radial position in capillary

segments A or B of P1 (Figure 8(a)) can be expressed by [71]

vseg(r)=−�0�rEext
�f

[
�seg + 2(�av − �seg)

(
1− r2

r2c

)]
(32)

where �av is the average value of � at the capillary inner wall (for P1 �av =−50 mV) and
rc denotes the capillary radius (the subscript ‘seg’ refers to �=0 mV or �=−100 mV, re-
spectively). The velocity pro�les calculated by using Equation (32) and compared to those
obtained from simulated LB �ow �elds are shown in Figure 11. The low-velocity region close
to the capillary wall in the computed �ow �eld reduces average velocity relative to the value
de�ned by integration of Equation (32) along the radial direction. However, as mentioned

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 46:507–532



526 D. HLUSHKOU, D. KANDHAI AND U. TALLAREK

–1 –0.5 0 0.5 1
0

1

2

3

4

Radial position, r/rc

V
el

oc
ity

 [m
m

/s
]

Herr et al. [71]
PNP–LB solution

–1 –0.5 0 0.5 1
0

0.5

1

1.5

2

V
el

oc
ity

 [m
m

/s
]

Herr et al. [71]    
PNP–LB solution

(a)

Radial position, r/rc(b)

Figure 11. Capillary with pattern P1. Comparison of the simulated intrasegmental velocity pro�les with
the analytical solution [71]: (a) Central cross-section of segment A (�=−100 mV); and (b) central

cross-section of segment B (�=0 mV).

above, the discrepancy decreases with an increasing aspect ratio, e.g. the di�erence between
simulated and calculated mean velocities for rc=�D=100 is only 0.45%, while it is 9.7% for
rc=�D=20 and 16.7% for rc=�D=10.
In contrast to the discrete axial heterogeneity of P1, the second pattern (Figure 8(b))

is characterized by an azimuthal inhomogeneity. The velocity �eld for P2 can be obtained
in the lubrication limit [72] by numerical solution of the boundary-value problem in polar
co-ordinates for an e�ective potential �(�; �) (� and � are radial and azimuthal co-ordinates)

1
�

@
@�

(
�
@�
@�

)
+
1
�2

@2�
@�2

= 0;
�(rc; �)|06�¡�=−�

�(rc; �)|�6�¡2�= �
(33)
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The �ow velocity then can be determined from Equation (1) by replacing the local electrical
potential  by the e�ective potential �, and a solution of this problem (Equation (33)) may
be obtained via the following expansion [72]:

�=−�̃0 −
∞∑
m=1
[�̃m exp(im�) + �̃

∗
m exp(−im�)]�m (34)

where �̃m (m=0; 1; : : : ;∞) is the complex Fourier transform

�̃m=
1
2�

∫ 2�

0
�(�) exp(−im�) d� (35)

It should be pointed out that a quantitative evaluation of the di�erences between the two
discrete velocity �elds obtained (i) by numerical solution of this problem (Equations (33)–
(35)) and (ii) from computer simulation becomes di�cult due to the di�erent co-ordinate sys-
tems. While the numerical solution requires the utilization of the polar or, at least, cylindrical
system, the PNP–LB computer simulations are realized in the cartesian co-ordinate system.
As a result, we have two sets of points corresponding to the polar mesh and rectangular grid.
Therefore, we analysed the two velocity �elds by using some of their characteristic prop-

erties. It is obvious that, due to the antisymmetry of the zeta-potential distribution in P2
with respect to a centre plane passing through the wall points where the sign of � changes,
the velocity distribution should possess a similar antisymmetry and any net volumetric �ow
through the capillary should vanish. Indeed, the simulated velocity �eld demonstrates such
‘self-compensation’ (Figure 10) by a deviation of the average velocity from zero of less
than 10−6% as compared to the average velocity in the capillary with uniform zeta-potential
(�=−100 mV).
The velocity pro�les in the plane [�=�=2; 3�=2], which is perpendicular to the antisymmetry

plane, obtained by solution of the problem in Equations (33)–(35) and by computer simula-
tion are shown in Figure 12. Since electromotive forces are e�ective only in a small region
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Figure 12. Comparison of velocity distributions in the plane [�=�=2; 3�=2] for the capillary
with surface charge pattern P2.
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Figure 13. Velocity pro�le in a cross-section of the open cylindrical capillary (rc = 1 �m)
with surface charge pattern P2 according to the approach of Ghosal [72]. The same

conditions as in Figures 9 and 10 have been used.

close to the wall of the capillary, actual di�erences in the velocity pro�les should be ex-
plainable by the respective velocity boundary conditions. While the slip-condition assumes a
discontinuous change of velocity at points where � changes its sign (Figure 13) our simulated
�ow �eld (Figure 10) here demonstrates a more realistic, smooth transition. As already shown
for the surface charge pattern P1, the global relative error in the �ow �eld associated with the
no-slip violation soon becomes signi�cant as the aspect ratio rc=�D is reduced below 50. In
this region (rc=�D¡100) the slip-condition should be used with care concerning a numerical
investigation of the EOF and resulting hydrodynamic dispersion. Consequently, this approxi-
mation does not appear useful in simulating �ow through complex porous media with broad
range of aspect ratios (1≈ rc=�D�1), and the more general approach described in this work
could be followed.

5. CONCLUSIONS AND OUTLOOK

We have presented a numerical method for three-dimensional simulation of EOF in micro�u-
idic channels and devices. It is applicable to structures with arbitrary pore space morphology
(including their geometry, as well as topology) and an arbitrary distribution of the electroki-
netic potential at the solid–liquid interface. This also covers the existence of random pore-size
distributions and, as a consequence, the possibility of �nding any range of aspect ratios in
a particular medium. Coupled hydrodynamic, electrostatic, and mass transport problems were
solved. In this work, the hydrodynamic problem has been treated with the lattice-Boltzmann
method. Straight capillaries were chosen as model systems due to the possibility of com-
paring simulated data with the analytical solution and results of other numerical simulations
for simple system con�gurations, in the e�ort to present a basis for e�cient modelling of
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electrokinetic phenomena in more complex porous media. Good agreement was obtained for
di�erent benchmark cases.
It should be mentioned that, in general, a further increase in the numerical accuracy of

the presented approach can be achieved without additional cost of computational time by
an implementation of multiscale schemes, e.g. with locally embedded grids in which the
lattice spacing is re�ned (or coarsened) locally. This approach allows to analyse the �ow
problem with a �ner spatial resolution in regions characterized by larger velocity gradients
and de�ne more accurately curved interfaces [79–82]. However, EOF regions which require
the imposition of �ner computational grids cannot always be recognized a priori [83], and
further work is needed for devising criteria to detect such regions of interest under a given
set of conditions.
A low-Reynolds number EOF dynamics on micrometer scale is not only encountered in

open-channel structures of microchip devices, but also in the voids of microscopically dis-
ordered media like random particulate packings or monoliths [59]. For example, in capillary
electrochromatography, as for most microchip applications, EOF is employed for achieving
signi�cantly less dispersive transport (compared to pressure-driven �ow) of complex mixtures
of (bio)molecular species which are separated on the high-surface area materials to become
identi�ed afterwards, preferably by on-line detection, e.g. via mass spectrometry. Our numeri-
cal approach based on the lattice-Boltzmann �ow �eld under most general conditions can cope
with any geometry and surface heterogeneity, and it will be particularly e�cient in resolving
details of the �ow �eld which govern mass transport and dispersion in a transient, as well as
long-time asymptotic regime. For more complex porous media and �ow patterns the presented
approach can contribute to a derivation of scaling laws for the EOF, involving parameters
such as the Reynolds and Peclet numbers, mass di�usivity, morphology of the medium, or
electrical double layer thickness. However, this also stimulates further investigation of dou-
ble layer resolution e�ects and limits when employing a slip-velocity boundary condition, in
particular with respect to the characteristic lengths in a porous medium, e.g. the sphere or
intraparticle pore diameter in �xed beds of porous spherical particles, continuously changing
channel dimensions and a varying shape, or the spatio-temporal heterogeneity of local surface
charge distributions.
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